3D宇宙 蓝色的宇宙中,一团白色的星云,旋转、喷射,一颗小小的卫星,正向着星云前进……这是今年5月《自然·天文》杂志的封面,讲述的是一位中国科学家及其团队的成果。 冯骅来自浙江,1997年考入清华大学,出于对物理的喜爱,选择工程物理专业。虽然当时,他对工程物理学什么,还有些懵懂,但四年的本科学习让他受益匪浅。“基础物理研究需要工程的支持,越是对未知的领域的探索,对工程的要求越极端。”冯骅回忆,“可能正因为当时受到了两方面的训练,我才走进了空间天文仪器的领域。” 四年光阴,转瞬即逝。本科毕业,冯骅继续留校深造,并拿下核科学与技术博士学位。结束四年国外科研工作,2008年11月,冯骅回到清华大学工程物理系任教。2019年4月,清华大学成立天文系,作为天文系前身清华大学天体物理中心成立之初的博士生,冯骅加盟天文系,同时任工程物理系兼职教授。 “天文系好不好与望远镜的口径成正比。”冯骅曾如此开玩笑,在他看来,天文学是一门观测驱动的科学,其发展在很大程度上依赖于新的观测方法和手段,即天文观测的新窗口。 “如果把天文学设想为一列火车,望远镜和探测器就是车头,”冯骅打了个比方,“天文学家一方面把望远镜做得更大更灵敏,让火车跑得更快,同时还在思考如何修建新的铁路,开凿新的隧道,让火车可以领略不同的风景。” “X射线偏振观测”,就是冯骅想要寻找的“新铁路”。 天体物理,太过深奥,冯骅努力说得浅显。“看过3D电影吧。” 冯骅说,看3D电影,要戴个墨镜,这墨镜就是一个偏振的滤光片,可以帮助观众看到3D的图像。“X射线偏振观测”,就是要在X射线波段观看宇宙里新的维度,“这对高能天体物理研究意义重大。”冯骅说,“我们感兴趣的黑洞、中子星这类极端天体的光学辐射很弱,却是很强烈的X射线辐射体,利用X射线偏振测量,可以获得高能辐射区域磁场方位、天体的几何对称性,从而进一步理解与这类极端天体密切相关的天文现象的物理过程发生机制。” 世界各国的科学家们一直在寻找这条“新铁路”,40年前,曾经成功过一次。1975年,美国科学家曾通过搭载在OSO-8卫星上的探测器,首次精确测量并发现蟹状星云的X射线辐射具有高度线偏振。 “那是第一次实验,也是此后40余年间最后一次实验。” 冯骅说,重启天文观测新窗口,成为他追逐的目标。 极化的光线 科学家第一次探测到蟹状星云X射线偏振时,冯骅还没有出生。 40余年停滞,探测灵敏度不足,被认为是X射线偏振技术的主要瓶颈之一。2001年,意大利科学家证实了一种软X射线偏振测量是“近乎理想的探测技术”,被视为这一领域的“转机”。此时,冯骅本科毕业,进入最旺盛的科研状态。 一切似有天意。 2009年,冯骅开始带领团队,在国际合作的基础上,对X射线偏振探测技术进行探索和改进。 越来越多的年轻人加入其中。 2010年初,尚在清华工程物理系读大三的李红,向老师冯骅请教问题,虽然当时对X射线偏振探测知之甚少,但和冯骅一聊,她立刻发现,“这个方向具有重要前景,而且也能用到本科所学的工程物理知识。” 以本科毕业设计为起点,李红跟随冯骅攻读博士学位,全身心投入到X射线偏振测量方法和仪器的研究中。 这对师生的目标很明确,要做出一款能满足空间应用需求的长寿命、高性能X射线偏振探测器。根据他们的设想,在一个火柴盒大小的传感器中,X射线通过铍窗进入,与探测气体发生光电效应产生光电子,之后,通过测量光电子穿过气体留下的二维径迹,即可推断出X射线的偏振信息。 原理虽然明晰,但实践颇为周折。单是把探测气体密封在“火柴盒”内,使其长期稳定工作,就花了两年多的时间。 实验初期,探测器总是在短时间内被烧坏,核心部件因高压放电被击穿,找不到原因,李红很着急,冯骅倒是没有过多的催促,扛得住失败,耐得住寂寞,是成功的必由之路。 反复测试之后,团队终于发现气体纯度是“罪魁祸首”。为了攻克难题,他们多方取经—— 超高真空技术方面的问题,请教中国计量科学研究院和清华凝聚态物理方面的专家; 结构材料方面,参考航空航天材料标准; 探测器封装环境方面有差距,就搭建超净室、烘烤除气,想方设法降低杂质成分; 为了将气体纯度从99.9%提高至99.999%,他们找到了专门做高纯气体的研究所,但因为所需量太少,研究所开始并不愿意做,几经沟通,才签署协议; …… 屡战屡败,屡败屡战。 探测器终于迎来“质变”,寿命从最初的半个小时,延长至5到10年。 2017年,冯骅团队打造的高灵敏度、低系统误差的X射线偏振探测器终于在实验室研制成功,并且通过了一系列空间环境模拟试验检验。 2018年10月,冯骅团队启动“极光计划”,这也是清华大学主导的首个空间天文项目。 “极光计划”(PolarLight)这个名字,缩写自轻型偏振仪(Polarimeter Light),也源于“偏振”一词,即“极化的光线”。
|